

SALSA® MLPA®

The Gold Standard for DNA Copy Number Determination

SALSA® MLPA®

The Gold Standard for DNA Copy Number Determination

- ✓ Reliable: the best method for detecting gene copy number variations
- ✓ Straightforward: easy to perform, simple analysis & clear results
- ✓ Cost-efficient: run on standard lab equipment & low assay costs
- ✓ **Versatile:** from whole genes to single exons, from methylation patterns to complex regions MLPA offers the best solution for each application

MLPA. The number one in CNV detection.

MLPA is the go-to technique for studying gene copy number variations (CNVs) associated with disease. With MLPA's optimized multiplex PCR-based method, it is possible to detect deletions and duplications in up to 60 DNA sequences in one easy reaction, without PCR primer bias. In addition, MLPA's detection range stretches from complete chromosomes down to single exons, and the method is so sensitive that it can reliably discriminate genes from highly similar pseudogenes. This is why laboratories worldwide rely on MLPA for studying genetic disorders and tumours.

Thousands of labs
around the world
rely on MLPA for the
diagnosis and research
of genetic disorders
and tumours.

MLPA Application Highlight

	<u> </u>	
Top 10 selling MLPA applications		
Predisposition to Cancer		
BRCA1	P002 BRCAI; P087 BRCAI confirmation	
BRCA2	P045 BRCA2/CHEK2; P090 BRCA2; P077 BRCA2 confirmation	
Lynch Syndrome	P008 PMS2; P003 MLH1/MSH2; ME011 Mismatch Repair Genes; P072 MSH6-MUTYH	
Congenital Disorders & Carrier Testing		
Alpha Thalassemia	P140 HBA	
Congenital Adrenal Hypoplasia	P050 CAH	
Cystic Fibrosis	P091 CFTR	
Duchenne Muscular Dystrophy	P034 DMD-1; P035 DMD-2	
Spinal Muscular Atrophy	P021 SMA; P060 SMA Carrier; P460 SMA (Silent) Carrier	
Imprinting Disorders		
Prader-Willi/Angelman Syndrome	ME028 Prader-Willi/Angelman	
Beckwith-Wiedemann / Russell- Silver Syndrome	ME030 BWS/RSS	

MLPA Application Selection

Over 350 MLPA assays are available, covering hundreds of disorders and thousands of genes. A small selection of our panels and genes:

Predisposition to Cancer

Breast Cancer (BRCAI/2, CHEKI/2, TP53) Lynch Syndrome (MLH1*, MSH2/6*, PMS2*) Neurofibromatosis (NF1/2) PTEN STK11 CDH1 PALB2 ATM

Tumour Profiling

Tumour suppressors (*IKZF1*, *TP53*, *RB1**)
Blood cancers (ALL, MDS, CLL, MM)
Breast (BRCAlness, *ERBB2*, *CCNE1*)
Glioma (1p, 19q, *IDH1*, *IDH2*, *MGMT**)

Sensory Disorders

Retinoblastoma Uveal Melanoma
Optic Atrophy type 1 Stargardt Disease
Macular Degeneration Usher Syndrome
Cone-rod Dystrophy 3

Intellectual Disability

Prader-Willi/Angelman Syndrome*
Subtelomeres Microdeletion Syndromes
Tuberous Sclerosis Rett Syndrome
DiGeorge Syndrome UPD7/14*

Neurological Disorders

Parkinson's Disease Hereditary Spastic Paraplegia Epilepsy (KCNQ2/3, SCN1A) Dopa-responsive Dystonia

Neuromuscular Disorders

Spinal Muscular Atrophy (SMN1, SMN2)
Duchenne Muscular Dystrophy (DMD)
Charcot-Marie-Tooth Disease
Limb Girdle Muscular Dystrophy

Immunological Disorders

Ataxia-Telangiectasia (AT) Acute Lymphoblastic Leukemia (ALL) Common Variable Immunodeficiency (CVID) Hereditary Angioedema (HAE)

Hereditary Blood Disorders

Thalassemia (Alpha, Beta) Fanconi Anemia Clotting Factor Deficiencies (V, IX, X, XI) Von Willebrand Disease

Cardiovascular Disorders

Marfan Syndrome HHT/HPAH Loeys-Dietz Syndrome Familial Hypertrophic Cardiomyopathy

Lung Disorders

Cystic Fibrosis Primary Ciliary Dyskinesia Alveolar Capillary Dysplasia AAT-deficiency

Kidney Disorders

Polycystic Kidney Disease Hemolytic Uremic Syndrome (HUS) Birt-Hogg-Dube Syndrome Alport Syndrome Nephronophthisis 1

Skeletal & Connective Tissue

Ehlers-Danlos (*PLOD1*, *COL3A1/5A1*) Marfan Syndrome Osteogenesis Imperfecta (*COL1A1/2*) *SHOX*

Endocrinological Disorders

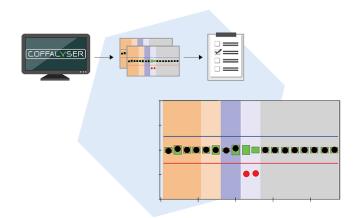
Congenital Adrenal Hyperplasia MODY Multiple Endocrine Neoplasia (MENI) Albright Hereditary Osteodystrophy (GNAS)*

Metabolic & Mitochondrial Disorders

Congenital Adrenal Hyperplasia (CAH) Hypercholesteremia Cytochrome *P450* Fabry Disease Phenylketonuria (PKU)

...and many more!

Scan the code or go to mrcholland.com/products


^{*} For this gene/application, both copy number and DNA methylation can be determined.

DIY Analysis. No bioinformatic skills needed.

Coffalyser.Net™. For Results that Count.

- ✓ Available free of charge
- ✓ Seamlessly Integrated
- ✓ Always up-to-date

Coffalyser.Net is free MLPA analysis software made and supported by MRC Holland.
Coffalyser.Net directly imports raw data files, performs advanced quality checks and data analysis to increase the robustness of your results. Analysis sheets for each product can be retrieved directly from our servers, ensuring you always have access to the latest versions.

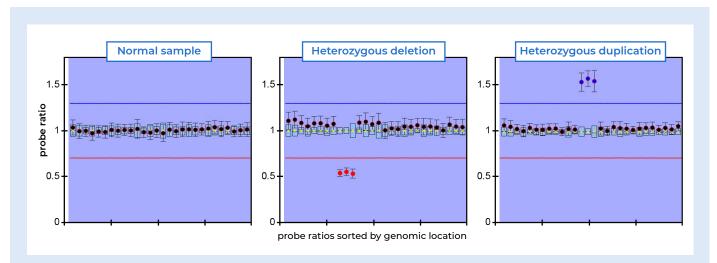


Figure 1. Determining *BRCA1* copy number using SALSA® MLPA® Probemix P002 BRCA1 and Coffalyser.Net. Probe ratios sorted by genomic location. Only excerpt shown, from *BRCA1* exon 24 (left) to exon 7 (right).

Ratios indicate number of probe targets found in tested sample compared to reference genomes.

Ratio	Copy Number	Genotype
1	2	Normal
0.5	1	Heterozygous deletion
1.5	3	Heterozygous duplication

Left: normal sample, no aberrations found.

Middle: sample showing a heterozygous deletion of exon 15 (1 probe) and exon 16 (2 probes).

Right: sample showing a heterozygous duplication of exon 13 (3 probes). This BRCAI duplication is relatively common in the UK due to a founder mutation.

